
Banding in Games:
A Noisy Rant

(revision 5)

Mikkel Gjøl, Playdead
@pixelmager

see also

http://loopit.dk/publications/

online link to this presentation
http://loopit.dk/banding_in_games.pdf

online link to this presentation http://loopit.dk/banding_in_games.pdf

- not going to go into too much detail about the theoretical background, try to give
intuitive understanding and focus on issues

https://twitter.com/pixelmager
http://loopit.dk/publications/
http://loopit.dk/banding_in_games.pdf
http://loopit.dk/banding_in_games.pdf

First a couple of example to motivate that this is actually still an issue in games.

amazing game, pixeljunk eden (if you haven’t played it, you should literally leave the
room and do so now!)
http://pixeljunk.jp/library/Eden/

http://pixeljunk.jp/library/Eden/

so what we’re looking at here are the “abrupt changes between shades of the same
colour”

Skyrim, amazing do-whatever-you-want game… which means most will remember
skyrim looking something like this
http://www.elderscrolls.com/skyrim

http://www.elderscrolls.com/skyrim

I was working on banding at the time I played it, so I remember the menus

...so I remember it looking mostly like this :)

...this is another beautiful indie-game, kentucky route zero
http://kentuckyroutezero.com/

http://kentuckyroutezero.com/

which on most high-quality monitors will have quite noticeable banding (but almost get
away with it due to their graphical style)

What happens to your precious pixels?
(monitor expects gamma-corrected srgb)

framebuffertextures
… blendingshaders

highplowp lowp

sRGB

the roughest pipeline-overview you will ever see
things to note:
- monitor expects an input that is “roughly” srgb - in order to give the monitor srgb
without terrible loss of precision, we either need >8bit precision, or need for all other
stages to be aware that color-values end up in sRGB space… there are many
interesting ways in which this can fail.
note also that blending reads from the framebuffer

see e.g. http://www.opengl.org/registry/specs/ARB/framebuffer_sRGB.txt

Gamma-incorrectness exposes banding
- so just render gamma-correct...

Might not be so easy...
● sRGB may not be available and functional
● ...under all circumstances, RTT, blending etc
● ...on all your target platforms
● ...including mobile and old PC-hardware
(doable on most platforms, but there may be good reasons
why your particular engine is not fully gamma-correct)

When incorrect the monitor will still correct the signal as if the image was in
gamma-space, exposes all the horrible bands in the dark areas
If you use sRGB correctly, you’re doing pretty well - you will generally hardly notice
banding (though dark areas remain)
If you are not on a platform where it’s readily available, or you want to get rid of the
last issues, the rest of this presentation is for you

rtt => render to texture

...just wanted to go over this, so we know where we are in the pipeline, and there are
good reasons a multiplatform engine could potentially have issues… mostly a last-gen
/ mobile issue though.
(thanks http://www.keepcalm-o-matic.co.uk/)

http://www.keepcalm-o-matic.co.uk/

...go read Steve Smith’s excellent talk
“Picture Perfect: Gamma through the Rendering

Pipeline” from Gamefest 2007
http://download.microsoft.com/download/b/5/5/b55d67ff-f1cb-4174-836a-bbf8f84fb7e1/Picture%20Perfect%20-%20Gamma%20Through%20the%20Rendering%20Pipeline.zip

- someone else already did that way better:
http://download.microsoft.com/download/b/5/5/b55d67ff-f1cb-4174-836a-bbf8f84fb7e1
/Picture%20Perfect%20-%20Gamma%20Through%20the%20Rendering%20Pipeline.
zip
(mirror: http://loopit.dk/Gamma_Through_the_Rendering_Pipeline.zip)

also http://www.poynton.com/GammaFAQ.html

http://download.microsoft.com/download/b/5/5/b55d67ff-f1cb-4174-836a-bbf8f84fb7e1/Picture%20Perfect%20-%20Gamma%20Through%20the%20Rendering%20Pipeline.zip
http://download.microsoft.com/download/b/5/5/b55d67ff-f1cb-4174-836a-bbf8f84fb7e1/Picture%20Perfect%20-%20Gamma%20Through%20the%20Rendering%20Pipeline.zip
http://download.microsoft.com/download/b/5/5/b55d67ff-f1cb-4174-836a-bbf8f84fb7e1/Picture%20Perfect%20-%20Gamma%20Through%20the%20Rendering%20Pipeline.zip
http://loopit.dk/Gamma_Through_the_Rendering_Pipeline.zip
http://www.poynton.com/GammaFAQ.html

“Don’t you just dither?”
banding
gone?

has sRGB?

can afford
higher

precision?

no

yes

prefer noise
to banding?

no

no

yes

yes

yes

change content :(

no

profit :)

This is the happy face of Thomas Rued, a man of experience who knows his pixels!
...when all else fails, add noise

Areas affected by color-banding
(...anything that renders gradients on screen)

Lighting
Fog
Alpha Blending
● additive (multipass

rendering)
● subtractive
● multiplicative (lerp)
● ...creative :p

Particles
Posteffects, e.g. glow,
aa, screen fades

(we will not go into
undersampling and
compression issues)

this talk is about the specific issues related to banding, where they occur and how to
remedy them
..most noticeable on anything creating gradients: fog, falloffs, glow, particle splotches,
from lights etc.
Noisy ‘signals’ (e.g. with a texture) “hides” most banding.

Dithering: The art of noise

a variety of ways to do dithering, ...they all have to do with how the eye blurs out small
changes (or integrates over an area). Squint a bit at the above image and you can
barely tell the difference...
https://www.shadertoy.com/view/MslGR8
...you should of course dither r,g,b separately for improved luminance

Dither Spatially (take advantage of eye accumulating multiple pixels)
Dither Temporally (take advantage of eye accumulating over time) => change dither
pattern per frame

Scanline dither: x2 steps
2x2 ordered: x4 steps
8x8 ordered: x8(?) steps

https://www.shadertoy.com/view/MslGR8

Ordered dithering on pixeldrugs
(gamedevs… sheesh!)

...or other weirdness if you want to be ‘creative’ ;)
(pixelartists)
- this is taken from a tutorial in drawing pixel-graphics with photoshop
http://danfessler.com/blog/hd-index-painting-in-photoshop

http://danfessler.com/blog/hd-index-painting-in-photoshop

Much better dithering schemes exist

● Floyd Steinberg and related methods
● Most are error-diffusion based, don’t map

well to GPUs
● uniform noise is good enough for Pixar

(and we don’t mind a bit of grain in our camera to get less sterile images)

error diffusion based methods rely on knowledge of the surrounding area, something
that doesn’t map well to the GPU, which prefer doing a lot of unrelated things in
parallel

http://www.realtimerendering.com/blog/2011-color-and-imaging-conference-part-ii-cou
rses-a/

http://www.joesfer.com/?p=149
http://www.joesfer.com/?p=108

http://www.realtimerendering.com/blog/2011-color-and-imaging-conference-part-ii-courses-a/
http://www.realtimerendering.com/blog/2011-color-and-imaging-conference-part-ii-courses-a/
http://www.joesfer.com/?p=149
http://www.joesfer.com/?p=108

unity lightbuffer - already in a logarithmic colorspace to enable HDR lighting, so no
sense in additionally using srgb

modified Internal-PrePassLighting.shader to do (monochrome) random dithering
...in order to not create discontinuities at deferred light-edge (light fades out to edge),
we subtract from the intensity instead of adding…
..so slightly darker, but otherwise uniform (we vary noise over time as well, so with a
bad monitor, and/or eyesight, the result is quite good)

quantizing signal
by truncation

signal
floor(signal)

doing simple quantization (by truncating) is always darker than intended signal (by
0.5bit on avg)

signal
floor(signal)

error rounding down

quantizing signal, error
accumulated err 0.5LSB, max err 1LSB, 0.5LSB bias towards darker

abs(err)

max error of 1 a Least-Signicant-Bit
0.5 LSB error on avg
0.5 LSB bias towards darker result

rounding
signal
signal+0.5
floor(signal+0.5)

signal
signal+0.5
floor(signal+0.5)

error rounding up

error rounding down

rounding
accumulated err is 0, max err 0.5LSB, no bias

abs(err)

Though the average error is 0.25LSB, the accumulated error is 0 (intuitively as area
rounding up == area rounding down), but absolute error at any value is as much as
0.5*LSB
Signal does not lose ‘energi’ as opposed to trunc
Smaller err, smaller maxerr (half before),

now at least on average, it’s the same signal as the original. It is unbiased.

rounding+signed random
(white noise, uniformly distributed [-0.5;0.5[LSB)

signal
signal+0.5

(signal+0.5) + [-0.5;0.5[
= signal + [0.0;1.0[

adding a uniform signed noise means we’re still not biasing the signal - sometimes
brighter, sometimes darker, so on average it does neither...
...property still valid that avg error is 0
This is exactly the same as adding a normalized [0;1[to the signal

“area” of noise
accumulated error still 0, max error 1LSB, no bias

signal
floor(signal)
ceil(signal)

error rounding up

error rounding down

abs(err)

max err of course now larger as we just added noise (but still: no bias)
intuitively: on average quantizing as much to value above as value below, so end up
with the same signal… on average

- same as before, on average the positive/negative noise will cancel out, and we get
the original signal on average.
Error still varies (intuitively: When signal crosses the truncated value, the resulting
error is 0)
...we get slightly worse max error than from just rounding.. but….

magnitude of uniform noise
signal
floor(signal)
ceil(signal)

abs(err)

...if we look at the accumulated error for a single value (integrating over the red/blue
stippled line), the error will now cancel out as well as for entire signal, resulting in the
original signal for any arbitrary single value
This is a property of the noise being uniformly distributed

intuitively, since the noise-distribution is uniform, when integrating across the line
shown the length of the line corresponds to the probability that the value will either
round up or down
...integrating floor(f) / ceil(f) across this line, we’ll end up at the signal

...noise is uniformly distributed, but the resulting visual noise is NOT uniformly
distributed - almost no noise near “correct” values
Really no reason to add noise where signal -is- it’s truncated value

triangular noise distribution
floor(signal + hash(seed1)+hash(seed2)-0.5) => [-0.5;1.5[

abs(err)+rnd +tri_rnd

HINDSIGHT: GPUs round, so

dither-range should be [-1;1[

i.e. hash(s1)+hash(s2)-1.0

Supposedly a PDF with better characteristics, commonly used for
audio-dithering. Effectively adds noise in low-noise-areas, giving a more
uniform noise-appearance.

We’re not currently using this, wikipedia suggests using it if the result is to be
“worked on further”...

Visually uniform noise in gradient (pretty much just adds noise to low-error
areas)

HINDSIGHT: The phenomenon is called “noise modulation”. This turns out to
be very important to achieve a banding-free look, and we relied heavily on it in
the shipped product.

HINDSIGHT: instead of calculating two hashes from scratch, they can be
combined to make them a lot faster. Also, remapping a single hash to have a
triangular PDF may be faster, see https://www.shadertoy.com/view/4t2SDh

references
http://en.wikipedia.org/wiki/Dither
http://www.ece.rochester.edu/courses/ECE472/resources/Papers/Lipshitz_199
2.pdf
https://www.shadertoy.com/view/4ssXRX

http://en.wikipedia.org/wiki/Dither
http://www.ece.rochester.edu/courses/ECE472/resources/Papers/Lipshitz_1992.pdf
http://www.ece.rochester.edu/courses/ECE472/resources/Papers/Lipshitz_1992.pdf
https://www.shadertoy.com/view/4ssXRX

various distributions
HINDSIGHT:

blue noise is less noticeable

“Awesome, if triangular is good, gaussian must be even betterer!” (spoiler:
don’t do it)

From left to right
● A uniform distribution in the interval [0;1[creates areas of little to no noise,

giving the impression of a smooth signal, but non-uniform noise.
● expanding the noise to [-0.5;1.5[creates areas of too much noise (in the

“overlapping” regions)
● Switching to a triangular distribution [-0.5;1.5[gives a nice uniform distribution

(the “overlapping” noise-regions accumulate to 1)
● Using a gaussian distribution again creates areas with too little noise
● using a gaussian-pdf in range [-1.0;2.0[appears very similar to triangular, but

with more noticeable noise

Empiric conclusion: Use a triangular distribution in the interval [-0.5;1.5[
HINDSIGHT: The reason a triangular distribution is “enough”, is that it does not
exhibit “noise modulation”. Neither do gaussians, but this is the main benefit.
HINDSIGHT: GPUs round, so dither-range should be [-1;1[
HINDSIGHT: Using high-pass filtered noise can give even better results, as the noise
is less noticeable. This is what is called “noise shaping” in audio-dithering.

various distributions, errors

HINDSIGHT: this shows the absolute value of the error, abs(err), which makes it hard
to see that positive/negative errors “cancel each out” in the noisy areas. Remapping
the actual error to a [0;1] range gives a much more accurate depiction of the error.

Example of dithering using triangular noise [-0.5;1.0[vs. uniform noise [0;1] -
triangular noise makes the noise more evident, but also more uniform - no areas with
little noise.
...the effect is certainly subtle, but better is better :) (and also more noisy :p)

subtracting noise
same properties, with an offset

signal
floor(signal)
ceil(signal)

just a quick note that subtracting noise of course results in a signal with the same
properties, but offset

Dithering after quantisation does not remove banding
(e.g. LDR film-grain at end of frame)

right: trunc(f+rnd) wrong: trunc(f)+rnd

“lets just add grain at end of frame to make banding go away”
...only works if input signal is kept at high precision, so e.g. HDR-rendering and
adding grain at time of tonemapping is fine…
Otherwise you are just adding noise on top of an already banding image.

the right color space

vec4 fragmain(vec2 fragpos) {

 vec4 outcol;

 …

 return outcol;

}

...spend a bit on time on this, because it’s important
colors are in linear-space in the pixelshader (or should be unless you’re messing
something up)...

In essense: Dither just before quantizing.

the right color space
(linear target, dithered)

vec4 hash42n(vec2 seed) { .. }

vec4 ditherRGBA(vec4 c, vec2 seed) {

 return c + hash42n(seed) / 255.0; //8bit

}
vec4 fragmain(vec2 fragpos) {

 vec4 outcol;

 …

 return ditherRGBA(outcol, pos);

}

...hash42n is a function returning a vec4 of uniformly distributed [0;1[random
numbers given a vec2 as seed.
It can be ALU or a texture-lookup depending on where you have most to spare...

the right color space
(manual srgb rendertarget)

vec4 ditherRGBA(vec4 c, vec2 seed) {

 return c + hash42n(seed) / 255.0; //8bit

}
vec4 fragmain(vec2 fragpos) {

 vec4 outcol;

 …

 return ditherRGBA(lin2srgb(outcol), fragpos);

}

convert first, dither afterwards… dither in whatever space the color will be quantized
in.

the right color space
(manual logarithmic buffer, e.g. unity lightbuffer)

vec4 ditherRGBA(vec4 c, vec2 seed) {

 return c + hash42n(seed) / 255.0; //8bit

}
vec4 fragmain(vec2 fragpos) {

 vec4 outcol;

 …

 return ditherRGBA(exp2(-outcol), fragpos);

}

again, do it as close to quantization as possible - jittering the light-value does not
help...

the right color space
(autoconverting srgb rendertarget)

vec4 ditherRGBA(vec4 c,vec2 s){return c+hash42n(s)/255.0;}

vec4 fragmain(vec2 fragpos) {

 vec4 outcol;

 …

 return srgb2lin(ditherRGBA(lin2srgb(outcol), fragpos));

}

...need to dither in whatever space the color will be quantized in.

vec4 ditherRGBA(vec4 c,vec2 s){return c+hash42n(s)/255.0;}

vec4 fragmain(vec2 fragpos) {

 vec4 outcol;

 …

 return srgb2lin(ditherRGBA(lin2srgb(outcol),fragpos));

}

//doesn’t strictly need to be all that accurate for
this...

vec4 srgb2lin(vec4 c) { return vec4(c.rgb*c.rgb, c.a); }

vec4 lin2srgb(vec4 c) { return vec4(sqrt(c.rgb), c.a); }

the right color space
(autoconverting srgb rendertarget)

(sqrt(c)+n)^2 == c + 2*n*sqrt(c) + n^2
...but pow(sqrt(c) + rnd/255.0, 2.0); is probably faster :p
… see also Timothy Lottes’: https://www.shadertoy.com/view/Md2XWw

https://www.shadertoy.com/view/Md2XWw

https://www.shadertoy.com/view/XsfXzf

incorrect:
trunc(lin2srgb(f+rnd))

correct:
trunc(lin2srgb(srgb2lin(lin2srgb(f)+rnd))

menu of steam big picture (best thing that has happened to pc-gaming for a long time)
- has noise added, but interestingly in what appears to be the wrong color-space.

Triangular dithering at boundaries
HINDSIGHT

It turns out, that due to clamping, the boundaries around black/white (0/1)
become wrong when using 2LSB triangular dithering.

https://computergraphics.stackexchange.com/questions/5904/whats-a-proper-way-to-
clamp-dither-noise/5952#5952

intuition: As the noise gets clamped, clamping destroys the symmetry in the noise -
and for that reason the average does not tend towards the actual signal

https://computergraphics.stackexchange.com/questions/5904/whats-a-proper-way-to-clamp-dither-noise/5952#5952
https://computergraphics.stackexchange.com/questions/5904/whats-a-proper-way-to-clamp-dither-noise/5952#5952

Triangular dithering at boundaries
HINDSIGHT

A solution is to lerp to a 1LSB uniform-PDF noise at boundaries

https://computergraphics.stackexchange.com/questions/5904/whats-a-proper-way-to-
clamp-dither-noise/5952#5952

Triangular dithering at boundaries
HINDSIGHT

vec2 rnd = hash22(seed);

float dithertri = (rnd.x + rnd.y - 1.0); //note: symmetric, triangular dither, [-1;1[

float dithernorm = rnd.x - 0.5; //note: symmetric, uniform dither [-0.5;0.5[

float sizt_lo = clamp(v/(0.5/7.0), 0.0, 1.0);

float sizt_hi = 1.0 - clamp((v-6.5/7.0)/(1.0-6.5/7.0), 0.0, 1.0);

dither = lerp(dithernorm, dithertri, min(sizt_lo, sizt_hi));

https://computergraphics.stackexchange.com/questions/5904/whats-a-proper-way-to-
clamp-dither-noise/5952#5952

https://computergraphics.stackexchange.com/questions/5904/whats-a-proper-way-to-clamp-dither-noise/5952#5952
https://computergraphics.stackexchange.com/questions/5904/whats-a-proper-way-to-clamp-dither-noise/5952#5952

alpha blending

blend-modes
● additive, c = c0+c1; //dither c0,c1
● subtractive, c = c0-c1; //dither c0,c1
● multiplicative, c = c0*c1; //… :(
● creative :p

adding / subtracting does not change the magnitude of LSB, so the dithering is fine.
You still end up adding 1LSB of noise for each input, which adds up...
multiplying ruins the whole thing - no way to determine the magnitude of a LSB is
after multiplication of “some value [0;1]” with a constant (accessing the
destination-buffer of course is even worse)

alphablending, non-constructive rnd
(blending multiple shaders to same pixel)

vec4 ditherRGBA(vec4 c, vec2 seed) {

 return c + hash42n(seed) / 255.0; //8bit

}

vec4 fragmain(vec2 fragpos) {

 vec4 outcol;

 …

 vec2 UNIQUE_SEED = vec2(0.6849);

 return ditherRGBA(outcol, fragpos+UNIQUE_SEED);

}

...blending tends to deal with translucency, so

...if blending multiple objects with to the same pixel, using a different noise-value for
each layer helps reduce noise.

alphablending, non-constructive rnd
(blending same shader to same pixel, particle systems)

vec4 ditherRGBA(vec4 c, vec2 seed) {

 return c + hash42n(seed) / 255.0; //8bit

}

vec4 fragmain(vec2 fragpos) {

 vec4 outcol;

 …

 vec2 UNIQUE_SEED = vec2(0.6849 + vspos.z);

 return ditherRGBA(outcol, fragpos+UNIQUE_SEED);

}

...if blending multiple objects with the same shader, using a different noise-value for
each layer helps reduce noise.
E.g. a particle-system with many layers could use the viewspace-z as a seed on top
of screenposition.

further blending issues

Anything that multiplies something onto dstcol
● do as much in shader as possible

○ don’t use blendunit for srcAlpha if you can do it
● 2pass: subtract from dst, then add color

(doesn’t band... but also doesn’t look the same)
● add moar noise to dst-alpha :(

...helps mask problem, but not a “solution”.

multiplicative blending
(dithered dstcolor) * srcalpha, can’t dither post-blend

signal
floor(signal)
floor(signal+noise)

0.5 LSB more noise required
(fine if added to incoming signal at highp)

too little noise,
pre-mult

enough
noise

scales down noise, need to add noise again before quantization
...really, we would be fine if the noise added to src-color would just remain at high
precision until after blending (more on that in a second...)

alphablending
(prefer premultiplied alpha)

vec4 ditherRGBA(vec4 c, vec2 seed) {

 return c + hash42n(seed) / 255.0; //8bit

}

vec4 fragmain(vec2 fragpos) {

 vec4 outcol;

 …

 outcol.rgb *= outcol.a;

 return ditherRGBA(outcol, fragpos);

}

additive blending with SRC_ALPHA means adding noise before multiplying!
premult: then at least the incoming signal is ok...
dithering alpha depends on how it’s used in the blend-function… prefer
pre-multiplied alpha to SRCALPHA, ONE_MINUS_SRCALPHA
http://home.comcast.net/~tom_forsyth/blog.wiki.html#[[Premultiplied%20alpha]
]
...allows to blend colors smaller than 1/255 (as they are dithered afterwards)

http://home.comcast.net/~tom_forsyth/blog.wiki.html#[[Premultiplied%20alpha

alpha-noise:
1xLSB

alpha-noise:
17xLSB

...empirical values \o/ Set manually by artists

precision of blend-unit?
it’s complicated... and platform specific

GPU vendor1
lowp (or quantize before blend?)

GPU vendor2
highp (or quantize after blend?)

HINDSIGHT:

consistent with d3d11-spec

honestly not entirely sure what is going on here… but seems vendor2 runs blending
at higher precision (or quantizes after blending). Fortunately, vendor2 can be found in
all major new consoles.

a * srccol + b * dstcol

trunc(a)*trunc(c0) + trunc(b)*c1t //… :(
trunc(c0d + b*c1t) // dithering-noise gets added “correctly”

-
Hindsight: This appears to be consistent with the d3d11 spec, which states that
blending only has to be performed at rendertarget-precision (e.g. rgba8 => 8bit
blending precision):
“When a RenderTarget has a fixed point format <snip> blending operations may be
performed at equal or more (e.g up to float32) precision/range than the output format.”

programmable blending

● nvidia opengl extension (also rsx on ps3)
GL_NV_texture_barrier

● intel dx11-extension, pixel shader ordering
● mobile tiled, deferred architectures,

opengles
GL_EXT_shader_framebuffer_fetch

● Currently no unified solution (dx12?)

way overkill - on platforms that support this, there are likely better alternatives: sRGB,
higher precision buffers etc.

nvidia / ps3 texture barrier http://www.opengl.org/registry/specs/NV/texture_barrier.txt
Intel pixelsync
https://software.intel.com/en-us/blogs/2013/03/27/programmable-blend-with-pixel-sha
der-ordering
moar pixelsync
http://advances.realtimerendering.com/s2013/2013-07-23-SIGGRAPH-PixelSync.pdf
Nvidia Raster-ordered view
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GT
X_980_Whitepaper_FINAL.PDF

http://www.opengl.org/registry/specs/NV/texture_barrier.txt
https://software.intel.com/en-us/blogs/2013/03/27/programmable-blend-with-pixel-shader-ordering
https://software.intel.com/en-us/blogs/2013/03/27/programmable-blend-with-pixel-shader-ordering
http://advances.realtimerendering.com/s2013/2013-07-23-SIGGRAPH-PixelSync.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF

post-processing

● Glow, screen-fades, vignettes...
● Typically happens on 8bit textures

(for very good bandwidth reasons)
● Writes images in multiple steps

○ ...so you should dither each step!
(or just the “important” ones, ymmv)

○ if need to match former incorrect, truncated,
non-dithered color, add (signed) rand[-0.5;0.5]
instead of (normalized) rand[0;1]

vanilla +rand() sRGB sRGB+rand()

post-processing: Glow

our solution dithers after every pass
manually converts all intermediate rendertargets to srgb (pow2, nothing fancy)
results in larger than 1pixel noise, but still not visible
sRGB goes a long way! adding noise was necessary for us though

limbo was entirely grayscale, also through the rendering pipeline

rendered in 10:10:10:2 on pc/xbox360, rgba16 on ps3 - color “offset-dithering” on
tonemapping (plus tons of film-grain in post!)
- please keep this “entirely gray-scale” image in mind, for when you during the next
slide think “oh this can’t possibly work!”

color-offset dithering
idea by Kim Steen Riber, now at Unity

limbo

rgb-weight

Very fast. Works for grayscale ONLY
“blueish” - color offset used in Limbo, adds x3 luminance steps
“red/green-ish” - weighted by rgb individual luminances, still only x3 steps
(even better using a custom LUT for luminances:
https://www.shadertoy.com/view/4sjXWw , adds ~x16 steps)

dithering overview: https://www.shadertoy.com/view/MslGR8

https://www.shadertoy.com/view/4sjXWw
https://www.shadertoy.com/view/MslGR8

concluding recommendations
● Use highest affordable precision available (duh)
● Use sRGB if feasible across target platforms
● Dither using triangular noise [-0.5;1.0[during

quantisation
(e.g. at tonemapping, or any write to an 8bit rt)

● Add noise in the right color-space
(the color-space your quantised values are stored in)

HINDSIGHT: GPUs round, so

dither-range should be [-1;1[

welcome side-effects from dithering
● Can now use and blend colors < 1/255
● No color-shifts in gradients (rgb truncate differently)
● Tons of additive layers? Now adds noise instead of

banding
● More colors perceived than the monitor is capable of
● smooooth screen-fades!

more or less intended side-effects

ooh, this stuff works for gbuffer-normals too!

(said no-one ever… and the sound-guy at Playdead)

“I wonder what that sounds like?”
https://www.youtube.com/watch?v=h59LwyJbfzs

https://www.youtube.com/watch?v=h59LwyJbfzs
not something you hear about graphics algorithms every day :)

https://www.youtube.com/watch?v=h59LwyJbfzs
https://www.youtube.com/watch?v=h59LwyJbfzs

Thanks
Daniel Povlsen, @danielpovlsen
Mikkel Svendsen, @IkarosAV
Jakob Schmid, @jakobschmid

All images are copyright of their respective authors

https://twitter.com/danielpovlsen
https://twitter.com/IkarosAV
https://twitter.com/jakobschmid

references
http://en.wikipedia.org/wiki/Dither

http://caca.zoy.org/wiki/libcaca/study/introduction

http://sandervanrossen.blogspot.dk/2012/02/hdr-dithering.html

http://www.realtimerendering.com/blog/2011-color-and-imaging-conference-part-ii-courses-a/

https://bartwronski.com/2016/10/30/dithering-part-one-simple-quantization/

https://www.shadertoy.com/view/MslGR8 - various dithering methods
https://www.shadertoy.com/view/4dfXW8 - example-workspace used in this presentation

http://xiph.org/video/vid2.shtml - on audio dithering

http://www.ece.rochester.edu/courses/ECE472/Site/Assignments/Entries/2009/1/15_Week_1_files/Lipshitz_1992.pdf -
dithering theory

http://download.microsoft.com/download/b/5/5/b55d67ff-f1cb-4174-836a-bbf8f84fb7e1/Picture%20Perfect%20-%20Ga
mma%20Through%20the%20Rendering%20Pipeline.zip

http://en.wikipedia.org/wiki/Dither
http://caca.zoy.org/wiki/libcaca/study/introduction
http://sandervanrossen.blogspot.dk/2012/02/hdr-dithering.html
http://www.realtimerendering.com/blog/2011-color-and-imaging-conference-part-ii-courses-a/
https://bartwronski.com/2016/10/30/dithering-part-one-simple-quantization/
https://www.shadertoy.com/view/MslGR8
https://www.shadertoy.com/view/4dfXW8
http://xiph.org/video/vid2.shtml
http://www.ece.rochester.edu/courses/ECE472/Site/Assignments/Entries/2009/1/15_Week_1_files/Lipshitz_1992.pdf
http://download.microsoft.com/download/b/5/5/b55d67ff-f1cb-4174-836a-bbf8f84fb7e1/Picture%20Perfect%20-%20Gamma%20Through%20the%20Rendering%20Pipeline.zip
http://download.microsoft.com/download/b/5/5/b55d67ff-f1cb-4174-836a-bbf8f84fb7e1/Picture%20Perfect%20-%20Gamma%20Through%20the%20Rendering%20Pipeline.zip

bad bonus slides!

“…render into a framebuffer that is scanned to a monitor configured to
assume framebuffer color values are sRGB encoded. This
assumption is roughly true of most PC monitors with default
gamma correction. This allows applications to achieve faithful color
reproduction for OpenGL rendering without adjusting the monitor's gamma
correction.”

ARB_framebuffer_sRGB (2008)

http://www.opengl.org/registry/specs/ARB/framebuffer_sRGB.txt

HDR resolve

http://sandervanrossen.blogspot.dk/2012/02/hdr-dithering.html

http://sandervanrossen.blogspot.dk/2012/02/hdr-dithering.html

Real World Assets
(it’s just noise, not magic)

http://www.sandraandwoo.com/comics/2012-11-19-0430-software-engineering-now-w
ith-cats.png

http://www.sandraandwoo.com/comics/2012-11-19-0430-software-engineering-now-with-cats.png
http://www.sandraandwoo.com/comics/2012-11-19-0430-software-engineering-now-with-cats.png

content fix:
Brighten albedo
Less bright light

bug: Banding from
exponential lightbuffer
compression

bugs from the real world
- a lightsource brighter than the sun, illuminating dark, black granite stone.

bugs from the real world (real-world assets)
“what the… oh”....not banding, just faceted geometry...

